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You can quantum compute indefinitely and with 
low overhead, so long as  

1) your gate error rate is less than ε and  
2) the correlations are sufficiently weak

Fault-tolerance threshold theorem
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Fault-tolerance threshold theorem

Even with really good 
mustaches, it’s tough!  
ε is pretty small, 
~0.1% or less. 
the overhead is still 
quite demanding

You can quantum compute indefinitely and with 
low overhead, so long as  

1) your gate error rate is less than ε and  
2) the correlations are sufficiently weak



Is our computers working?
How can we check if our system is FTTT compliant 
when we are near the threshold?

Overhead prohibits a direct demonstration even 
if you are just under the threshold 
High-precision demands and O(1/ε2) scaling of 
sampling methods introduce challenges

Complexity is a practical bottleneck 
for assessing quantum devices 



We want to evaluate progress toward the goal of FTQC 
Experimentalists (and funding agents!) want standardized 
numbers that are comparable across radically different 
platforms 
The numbers should be related to something operational, e.g. 

trace distance for states (worst case) 
diamond distance for channels (worst case) 
gate fidelity (average case) 

Complexity of obtaining a useful estimate should not be 
prohibitive on multi-qubit systems (the more the better)

What do we really want?



State and Process Tomography
Fine in principle, but fails in practice due to 
the inevitable presence of a noise floor

Merkel et al. 2013.





SPAM Errors
State Preparation And Measurement Errors

Some SPAM-resistant tomographic methods are being developed: 
Blume-Kohout et al. 2013; Kimmel et al. 2014.



Randomized Benchmarking
Emerson, Alicki, Zyczkowski 2005;  Knill et al. 2008.

Choose a random set s of m Clifford gates 
Prepare the initial state in the computational basis 
Apply the Clifford sequence, and add the inverse gate 
at the end of the sequence  
Measure in the computational basis

Repeat to estimate Fm,s = Pr(E|s,ρ)

Cm C3 C0C2…(E| |ρ)C1



Randomized Benchmarking

Knill et al. 2008.
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FIG. 1: Fidelity as a function of the number of steps for each randomized sequence. The fidelity
(1 − prob. of error) is plotted on a logarithmic scale. The fidelity for the final state is measured for each
randomized sequence. There are 32 points for each number of steps, corresponding to 8 randomizations of
each of four different computational sequences. Different symbols are used for the data for each computa-
tional sequence. The standard error of each point is between 0.001 (near fidelities of 1) and 0.006 (for the
smaller fidelities). The scatter greatly exceeds the standard error, suggesting that coherent errors contribute
significantly to the loss of fidelity.

Subsystem preserving errors. The errors cause no leakage out of the subsystem defining
the qubits.

Although the AAEP need not be identical to the AEP, we conjecture that there are useful bounds
relating the two error probabilities. In particular, if the AAEP is zero then there is a fixed logical
frame in which the AEP is zero. Trivially, if the AEP is zero, then the AAEP is zero.
Randomized benchmarking involves both Pauli randomization and computational gate random-

ization. The expected effect of Pauli randomization is to ensure that, to first order, errors consist of
random (but not necessarily uniformly random) Pauli operators. Computational gate randomiza-
tion ensures that we average errors over the Clifford group. If, as in our experimental implemeta-
tion, the computational gates generate only the Clifford group, it takes a few steps for the effect to
be close to averaging over the Clifford group. This process is expected to have the effect of making
all errors equally visible to our measurement, even though the measurement is fixed in the logical
basis and the last step of the randomized computation is picked so that the answer is deterministic
in the absence of errors.

VI. BENCHMARKINGMUTLIPLE QUBITS

Scalable quantum computing requires not only having access to many qubits, but also the ability
to apply many low-error quantum gates to these qubits. The error behavior of gates should not
become worse as the computation proceeds. Randomized benchmarking can verify the ability to
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FIG. 2: Average fidelity as a function of the number of steps for each computational sequence. The points
show the average randomized fidelity for four different computational gate sequences (indicated by the
different symbols) as a function of the length. The average fidelity is plotted on a logarithmic scale. The
middle line shows the fitted exponential decay. The upper and lower line show the boundaries of the 68%

confidence interval for the fit. The standard deviation of each point due to measurement noise ranges from
0.0004 for values near 1 to 0.002 for the lower values, smaller than the size of the symbols. The empirical
standard deviation based on the scatter in the points shown in Fig. 1 ranges from 0.0011 to 0.014. The slope
implies an error probability of 0.00482(17) per randomized computational gate. The data is consistent with
the gate’s errors not depending on position in the sequence.

apply many multiqubit gates consistently.
Randomized benchmarking can be applied to two or more qubits by expanding the set of com-

putational gates to include multiqubit gates. The initial state is |0 . . . 0⟩. Pauli randomization is
performed as before and is expected to convert the error model to probabilistic Pauli errors to first
order. Because the size of the Clifford group for two or more qubits is large, one cannot expect
to effect a random Clifford group element at each step. Instead, one has to rely on rapid mixing
of random products of generators of the Clifford group to achieve (approximate) multiqubit de-
polarization. The number of computational steps that is required for approximate depolarization
depends on the computational gate set. An example of a useful gate set consists of controlled
NOTs (alternatively, controlled sign flips) combined with major-axis π/2 pulses on individual
qubits. By including sufficiently many one-qubit variants of each gate, one can ensure that each
step’s computational gates are randomized in the product of the one-qubit Clifford groups. This
already helps: It has the effect of equalizing the probability of Pauli product errors of the same
weight (see [24]).
The one-qubit randomized benchmark has a last step that ensures a deterministic answer for

the measurement. For n > 1 qubits, one cannot expect deterministic answers for each qubit’s
measurement, as this may require too complex a Clifford transformation. Instead, one can choose
a random Pauli product that stabilizes the last state and apply a random product of one-qubit π/2
pulses with the property that this Pauli product is turned into a product of σz operators. If there is

Knill et al. 2008.
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FIG. 1: Sketch of Magesan et al derivation of the zeroth-order model [12]. (a) Sequence of length m = 3 Clifford operations. (b)
Change of variables to Vi, factoring out previous gates Ui�1, and with the base case U1 = V1. The V gates then form a 2-design.
(c) Expectation value over random gates in (a) and (b), giving the twirling superchannel W acting on L.

FIG. 2: Optimal value of m as a function of the scale A and offset B parameters, with p̃ = 0.9988 and pref = 0.9978, based on
the example of [9]. On the top left, B = 0.5. On the top right, A = 0.25. Below, we take the limit as d ! • of dmopte, assuming
F̃ = Fref = F.

tioned on 1,

q(x|1; m, mode) = r
x

log Pr(1|x; m, mode)

= Pr(1|x; m, mode)�1

(
(0, Ampm�1

ref , pm
ref, 1) reference

(Amp̃m�1 pm
ref, Amp̃m pm�1

ref , pm
ref, 1) interleaved

,
(9)

where the similar expression for the outcome “0” follows immediately. With this, we can calculate the Fisher infor-
mation matrix I(x) := ED|x[q(x|D)q(x|D)T], where D labels the outcomes.

Fisher information analysis is one of the most power-
ful tools of statistical analysis since it bounds the perfor-

mance of the continuous infinity of possible estimators
we could choose. However, given the difficulty of ana-

Magesan, Gambetta, & Emerson 2012;  Granade, Ferrie, & Cory 2014.

f =
dFavg(⇤)� 1

d� 1

Favg(⇤) =

Z
d Tr[ ⇤( )]

2

ences between the control model and the actual system
to be adjusted for in experimental practice [27]. These
methods are applied in a control design and calibration
step, however, and do not allow for control for to be
recalibrated dynamically. Whereas randomized bench-
marking is performed at the inner-loop of current con-
trol calibration algorithms [22], any data collection over-
head in benchmarking becomes a very significant cost
to control calibration as a whole. Thus, by reducing the
data requirements using both better fitting methods and
strong prior information, we can enable new applica-
tions, such as extending control calibration to an online
context.

Here, we show that by using prior information to-
gether with the sequential Monte Carlo (SMC) param-
eter estimation algorithm, we can obtain very accurate
estimates of parameters. Moreover, we do so even in
the limit of one bit of data per sequence length. That
is, we can use a variety of sequence lengths to probe
the performance of our gate set rather than repeat many
experiments at a given sequence length. On the other
hand, we also show that for gates with fidelities near
unity, increasing the length of benchmarking sequences
offers little compared to repeating experiments at al-
ready optimal sequence lengths. The SMC algorithm
is based on Bayesian methods, which have been used
successfully in a variety of quantum information pro-
cessing tasks [28–34]. SMC has recently been used in
quantum information to learn states [30] and Hamilto-
nians [35, 36], and to provide robust error bounds on
inferred parameters [37]. The primary cost incurred by
the SMC algorithm is that the data must be simulated
repeatedly; though this can be mitigated by using quan-
tum resources [38–40]. Here we show that since the
symmetries afforded by random benchmarking exper-
iments can be used to simulate datasets with costs that
are constant with respect to the dimension of the Hilbert
space of interest [12], SMC can be implemented with
little overhead. Thus, randomized benchmarking mit-
igates the primary disadvantage of SMC by removing
the need to simulate the quantum system.

Moreover, the method of hyperparameters [35] gener-
alizes our approach to allow gate fidelities to be non-
trivial functions of some other parameter of interest,
such that the underlying parameter is learned directly.
This approach is especially relevant if, for example, the
effect of the unknown hyperparameter depends on an
experimental choice, such that distinct benchmarking
experiments can be used in concert in a straightforward
way.

Our work proceeds first by defining the benchmark-
ing model that we use, then showing bounds on the
estimation of the parameters of this model using the
Cramer-Rao bound. We then apply sequential Monte
Carlo to the benchmarking model and compare to the
performance of traditional methods, and to the optimal
performance achievable with prior information, show-
ing that our method offers distinct advantages, and is

nearly optimal.

I. INTERPRETATION OF LIKELIHOOD AS
MARGINALIZATION

Randomized benchmarking consists of using a se-
quence of random gates to effectively average the ac-
tion of an error channel such that it can be simulated
using simple classical models. If the gates in each ran-
domized benchmarking sequence are chosen uniformly
at random from the Clifford group, then the argument
of Magesan et al [12] shows that the average fidelity Fg
taken over all randomized benchmarking sequences of
a given length can be expressed in terms of the survival
probability

Pr(survival|y, im) = Tr[Ey
ˆ̂S
im(ry)], (1)

where Ey is a measurement operator corresponding to a
fiducial state ry, and where ˆ̂S

im = ˆ̂Sim � · · · � ˆ̂Si1 is the su-
peroperator representing the sequence im. Because the
Clifford group C forms a unitary 2-design, random se-
quences of Clifford gates average the errors in each gate
over the Haar measure, an operation known as twirling.
In particular, given a channel L, conjugating the action
of that channel by ideal Clifford gates chosen uniformly
at random implements the twirling superchannel [12],

W[L](r) =
Z

dU U†L[UrU†]U

=
1
|C| Â

U2C
U†L[UrU†]U = pr + (1 � p)

d
,

(2)

where d is the dimension of the Hilbert space on which
each gate acts, and where p is related to the average gate
fidelity F of L by p = (dF � 1)/(d � 1).

The expectation value of this survival probability over
all sequences of a given length m was shown to produce
the uniform-average fidelity

Fg(m, y) = E
im |m[Pr(survival|y, im)] = Pr(survival|y, m).

(3)
We may thus interpret the fidelity averaged over a uni-
tary design as a probability of survival in an experi-
ment in which we do not know the sequence being per-
formed. As discussed in detail in Appendix A, if se-
quences are fairly drawn from the 2-design indepen-
dently of all other experimental choices, then this is a
valid assumption, such that the marginalized survival
probability can be taken as the likelihood for our ran-
domized benchmarking model. Note that in the remain-
der of the paper, we will let y be fixed, and will drop the
notation conditioning on this assumption.

Using the expansion of the marginalized survival
Fg(m) given by Magesan et al [12], we can rewrite the

= f⇢+ (1� f)
d
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FIG. 2: Average fidelity as a function of the number of steps for each computational sequence. The points
show the average randomized fidelity for four different computational gate sequences (indicated by the
different symbols) as a function of the length. The average fidelity is plotted on a logarithmic scale. The
middle line shows the fitted exponential decay. The upper and lower line show the boundaries of the 68%

confidence interval for the fit. The standard deviation of each point due to measurement noise ranges from
0.0004 for values near 1 to 0.002 for the lower values, smaller than the size of the symbols. The empirical
standard deviation based on the scatter in the points shown in Fig. 1 ranges from 0.0011 to 0.014. The slope
implies an error probability of 0.00482(17) per randomized computational gate. The data is consistent with
the gate’s errors not depending on position in the sequence.

apply many multiqubit gates consistently.
Randomized benchmarking can be applied to two or more qubits by expanding the set of com-

putational gates to include multiqubit gates. The initial state is |0 . . . 0⟩. Pauli randomization is
performed as before and is expected to convert the error model to probabilistic Pauli errors to first
order. Because the size of the Clifford group for two or more qubits is large, one cannot expect
to effect a random Clifford group element at each step. Instead, one has to rely on rapid mixing
of random products of generators of the Clifford group to achieve (approximate) multiqubit de-
polarization. The number of computational steps that is required for approximate depolarization
depends on the computational gate set. An example of a useful gate set consists of controlled
NOTs (alternatively, controlled sign flips) combined with major-axis π/2 pulses on individual
qubits. By including sufficiently many one-qubit variants of each gate, one can ensure that each
step’s computational gates are randomized in the product of the one-qubit Clifford groups. This
already helps: It has the effect of equalizing the probability of Pauli product errors of the same
weight (see [24]).
The one-qubit randomized benchmark has a last step that ensures a deterministic answer for

the measurement. For n > 1 qubits, one cannot expect deterministic answers for each qubit’s
measurement, as this may require too complex a Clifford transformation. Instead, one can choose
a random Pauli product that stabilizes the last state and apply a random product of one-qubit π/2
pulses with the property that this Pauli product is turned into a product of σz operators. If there is

Knill et al. 2008.
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measure [18, 19]. To accomplish this, the following protocol is implemented.

• Choose a random sequence s = s
1

. . . sm 2 Nm
|G| of m integers chosen uniformly at random

from N|G| = {1, . . . , |G|}.

• Prepare a d-dimensional system in some state ⇢ (usually taken to be the pure state |0i).

• At each time step t = 0, . . . ,m, apply gt where gt = gst and g
0

:=
Qm

t=1

g�1

t . Alternatively,
to perform interleaved randomized benchmarking for the gate g

int

2 G, apply gt,int where
gt,int = g

int

gt for t 6= 0 and, as before, g
0,int =

Qm
t=1

g�1

t,int. (In general, each gate must be
compiled into a sequence of elementary gates as well.)

• Perform a POVM {E, � E} for some E (usually taken to be |0ih0|) and repeat with the
sequence s su�ciently many times to obtain an estimate of the probability Fm,s = p(E|s, ⇢)
to a suitable precision.

We can regard the probability Fm,s as a realization of a random variable Fm. We will denote
the variance of the distribution {Fm,s : s 2 N|G|} for a fixed m by �2m. Averaging Fm,s over a

number of random sequences will give an estimate F̂m of F̄m, the average of Fm,s over all sequences
s of fixed length m (that is, F̄m is the expectation of the random variable Fm). The accuracy of
this estimate will be a function of the number of random sequences and �2m.

Obtaining estimates F̂m for multiple m and fitting to the model

F̄m = A+Bfm (1)

will give an estimate of f provided that the noise does not depend too strongly on the target
gate [10], where [20]

f =
dF

avg

(E)� 1

d� 1
(2)

and

F
avg

(E) =
Z

d Tr
⇥

 E( )
⇤

(3)

is the average gate fidelity of a noise channel E with respect to the identity channel and d is
the uniform Haar measure over all pure states. The average gate fidelity of E gives the average
probability that preparing a state  , applying E and then measuring { , �  } will give the
outcome  , averaged over all pure states  .

For standard randomized benchmarking, E is the error channel per operation, averaged over
all operations in G. For interleaved benchmarking, E is the error channel on a composite channel,
namely, the interleaved channel composed with an element of G, averaged over all G. We note in
passing that separating the error in the interleaved channel from the error in the composite channel
is one of the key di�culties in obtaining meaningful results from interleaved benchmarking [21],
though we do not address this issue here.

III. STATEMENT OF RESULTS AND PAPER OUTLINE

The first principal contribution of this paper is to show that the number of random sequences
that need to be averaged is comparable to the number actually used in contemporary experiments
(compared to previous best estimates, which require 3 orders of magnitude more random sequences

“0th order model”:  
Fit to the model

Note this is not a 
linear model!



Optimal Experiment Design

Given some prior knowledge about our average 
error rate (e.g. from Rabi oscillations), how can we 
design an optimal experiment?  

We need to know how the variance changes with 
m and r = 1-Favg.  

Unfortunately, naive bounds depend on the SPAM:
�2
m  (A+B)(1�A�B) +

mdBr

d� 1
+O(m2r2)

This leads to estimates of sampling ~105 sequences!
Epstein et al. 2014



Our Contribution Wallman & STF 2014

Reduce the variance bound from O(1) to O(mr)

For general d-level systems, the bound is 

For the special case of qubits, we obtain 

If the noise is diagonal in the Pauli basis (e.g. 
depolarizing or dephasing noise), we obtain 

Plus some robustness guarantees against weak 
time-dependent and nonmarkovian noise…
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than currently used). The second principal contribution is to show that randomized benchmarking
can be used to characterize time-dependent fluctuations in the noise strength.

In more detail, and in order of appearance, we show the following.

• We use the results derived later in the paper to obtain explicit confidence intervals for the
estimates F̂m when mr ⌧ 1, where r = 1�F

avg

(E) is the average gate infidelity (Sec. IVA).

• Again, using results derived later, we show that a more thorough analysis of randomized
benchmarking data can be used to characterize time-dependent Markovian noise, and con-
sequently as a su�cient condition for the presence of non-Markovian noise in a system
(Sec. IVB).

• We review representation theory and the Liouville representation of quantum channels and
prove some elementary results (Sec. V). We give an explicit proof of bounds on the diamond
norm (which characterizes the worst-case error rate) in terms of the average gate fidelity
(which characterizes the average error rate). These give slight improvements over previously
stated (but unproven) bounds (Sec. VD).

• We derive an expression for the mean of the randomized benchmarking distribution with
time-dependent noise (Sec. VIA).

• We show that the variance for randomized benchmarking d-level systems with average gate
infidelity and sequences of length m satisfies

�2

m  4d(d+ 1)mr +O(m2r2d4) . (4)

Furthermore, we provide an argument that suggests that this bound can be improved to

�2

m  mr +O(m2r2d4) . (5)

• For qubits, we improve the upper bound to

�2

m  m2r2 +
7mr2

4
+ 6�mr +O(m2r3) +O(�m2r2) , (6)

where � quantifies the deviation from preparations and measurements in a Pauli eigenstate.
We use this improved bound to derive confidence intervals that rigorously justify the use of
a small number of random sequences for qubits in the regime mr ⌧ 1.

• For the special case of single-qubit noise that is diagonal in the Pauli basis, we further
improve the upper bound to

�2

m  11mr2

4
+O(m2r3) , (7)

which is independent of preparations and measurements.

• We show that the variance for unital (but nonunitary) channels decays exponentially to zero
asymptotically, while the variance for nonunital noise converges exponentially to a positive
constant proportional to the degree of nonunitality (as suitably quantified).

• We prove that our results are robust under gate-dependent noise, which is one of the key
assumptions under which randomized benchmarking produces a meaningful result. Further-
more, since our results apply to interleaved randomized benchmarking, gate dependence can
be experimentally tested and used to bound the contribution from gate-dependent terms.
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These bounds are really tight!

Random channels sampled using Ruskai, Szarek, & Werner 2002

This result leads 
to estimates on 
the order of 100 
sequences 
compared to 
previous 
estimates of 
~105 sequences



Our Methods
Variance depends on the average of the tensor power 
 

Use plethysm of the Clifford group; Schur’s lemma is 
not enough! 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B. Upper bounds on the variance

We now consider the variance �2

m of the distribution {Fm,k} for fixed m. It has been observed
that the standard error of the mean (and hence the sample variance) can be remarkably small in
experimental applications of randomized benchmarking using relatively few random sequences [12,
22]. In this section, we will prove that the variance due to sampling random sequences is indeed
small in scenarios of practical interest (i.e., mr ⌧ 1) by obtaining an upper bound on �2

m in terms
of mr. For the special case of a qubit, we will also obtain a significantly improved upper bound in
terms of m and r.

We begin by obtaining a general bound on �2

m that depends only on m, r and the dimension d
of the system being benchmarked. In order to present results in a simple form, we assume that the
noise is time- and gate-independent, however, the results in this section can readily be generalized
to time-dependent noise.

As a first attempt at obtaining a good bound on the variance, we use only the fact that when
mr ⌧ 1, we have F̄m ⇡ A + B, where A = E

0

⇢
0

and B = ~E · ~⇢. Expanding the expression from
Theorem 8 to first order in r using Eq. (41) gives

F̄m = A+B � Bmdr

d� 1
. (45)

The value of all realizations of F̄m (i.e., the probabilities Fm,s) are all in the unit interval. Since
the distribution with the largest variance that has mean F̄m and takes values in the unit interval
is the binomial distribution with that mean, we then have

�2

m  F̄m(1� F̄m) = (A+B)(1�A�B) +
mdBr

d� 1
. (46)

While simple to obtain, this bound has a constant o↵-set term that depends upon the SPAM which
seems to be unavoidable. This term would be zero in the absence of SPAM, and could even be
eliminated if the probabilities Fm,s could be restricted to the interval [1�A�B,A+B]. However,
as illustrated in Sec. IVA, this cannot be done in general. Moreover, we expect that the above
argument substantially overestimates the variance because it ignores the possibility that many
sequences may have Fm,s closer to F̄m.

We now obtain an alternative bound that has a larger coe�cient for r, but no constant term.
We note from the outset that the following bound is not tight in general (and the previous bound
suggests that the dimensional factor is an artifact of the proof technique), though by improving
one of the steps we will be able to obtain a tight bound for qubits. To facilitate our analysis, we
use the identity (E|E|⇢)2 = (E⌦2|E⌦2|⇢⌦2) to write the variance as

�2

m = |G|�m
X

k

F 2

m,k � F̄ 2

m = (E⌦2|
⇣

⇥

(⇤⌦2)G
⇤m �

h

�

⇤G�⌦2

im⌘

|⇢⌦2) . (47)

Theorem 10. The variance for time- and gate-independent randomized benchmarking of d-level
systems with time- and gate-independent noise satisfies

�2

m  4d(d+ 1)mr +O(m2r2d4) . (48)

Proof. We write ⇤ = � r�, where the first row of � is zero since ⇤ is CPTP. Since (d2 � 1)f =
Tr' = Tr⇤� 1, we can use Eq. (41) to obtain Tr� = d(d+ 1)

We then expand the expression

�2

m = (E⌦2|
⇣

⇥

(⇤⌦2)G
⇤m �

h

�

⇤G�⌦2

im⌘

|⇢⌦2) (49)
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We begin by noting that in the basis
� ⌦2, ⌦ A,A⌦ ,A⌦ A

 

we have
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B

B

@

1 0 0 0
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P
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↵⌦2 |C
2

|�1
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g2C2 g↵⌦ '(g) |C
2

|�1

P

g2C2 '
(g) ⌦ g↵ ('⌦2)C2

1

C

C

A

(66)

where P
1

= |C
2

|�1

P

g2C2 g
⌦2. It can be verified that ~E⌦2 is in the null space of

P

g2C2 '
(g) ⌦ g↵

and
P

g2C2 g↵ ⌦ '(g) for any ~E by, for example, considering a basis for the space of '’s. We note
in passing that this property is not a general property of 2-designs, in that it does not hold for the
single-qutrit Cli↵ord group.

By Propositions 11 and 1 ('⌦2)C2 =
P

R �RPR where the PR are the projectors onto the irreps
from Proposition 1 and �R = TrPR'⌦2/TrPR. From Eq. (47), together with the orthogonality of
the projectors PR, we have
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+
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R
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We can bound the first term using
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(68)

where we have used and the trivial bound �
1

 1 (for the first term only) and Proposition 12 to
obtain the final inequality.

Similarly, the eigenvalues can be calculated to be
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X

j
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j,j , (69)

where we have omitted �S since it will not contribute to the variance since any symmetric vector
(such as ~E⌦2) will be orthogonal to PS .

We now consider general noise with ~E and ~⇢ as in Eq. (65), where, without loss of generality, we
set ~w = ~z. We begin by considering the case � = 0, for which ~E⌦2PT = ~E⌦2PS = 0. Then a simple
calculation using Proposition 12 gives ~E⌦2P

1

~⇢⌦2 = a2b2/3, ( ~E~⇢)2 = a2b2 and ~E⌦2P
2

~⇢⌦2 = 2

3

a2b2.
The eigenvalues �

1

and �
2

can be written as x+2y and x� y respectively, where x = 1

3

P

j '
2

j,j

and y = 1

6

P

j 6=k '
2

j,k. Writing ' = � �r, where Tr� = 6 (cf. the discussion in the proof of
Theorem 10), we have

1� 4r + 4r2  x :=
1

3

X

j

'2

jj = 1� 4r +
r2

3

X

j

�2

jj  1� 4r + 12r2 , (70)

where the maximum and the minimum are obtained by maximizing and minimizing
P

j �
2

jj subject
to

P

j �jj = 6 for real matrices � with nonnegative diagonal entries respectively. The diagonal
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for all u such that kuk
2

= 1. Therefore

�

�

�

�

'⌦2

�G
�

�

�

2

1
 1� |G|�1



1� Tr'†'

d2 � 1

�

. (87)

⇤
Theorem 17. Let ⇤ be a 2-contractive channel with respect to a group G that is also a 2-design.
Then the variance due to sampling random gate sequences of elements from G decays exponentially
to
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, (88)

where P
1

= |G|�1

P

g2G g
⌦2 is a rank-1 projector and �

1

= TrP
1

'⌦2.

Proof. For convenience, we use the block basis
� ⌦2, ⌦ A,A⌦ ,A⌦ A

 

for the matrix repre-
sentation. In this basis, we can write
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where we have used
P

g2G g = 0 by Proposition 1, P
1

= |G|�1

P

g2G g
⌦2, and

b = |G|�1

X

g2G
'(g) ⌦ [g↵]

c = |G|�1

X

g2G
[g↵]⌦ '(g) . (90)

By Propositions 1 and 2, P
1

is a rank-1 projector onto the trivial subrep, which occurs with
multiplicity 1.

It can easily be shown using an inductive step that
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where
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m�1

X

t=0
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c . (92)
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where
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Need to bound the spectral gap of the 
averaged tensor power of the transfer matrix
Analysis proceeds by bounding the nonunital 
contribution, von Neumann’s trace inequality, 
and a lot of sweat.



A Conjecture

23

where the final inequality follows since � = |~�
1

· ~�
2

|, |ab|  1/2. ⇤
It is worth noting that one could in principle fill in the implicit constants given in the big-

O notation by following the previous argument with su�cient care. To have a truly rigorous
confidence region, one would need to take this into account, but for current parameter regimes of
interest, the terms really are negligible, so it hardly seems worth optimizing this concern.

We also note that �⇢ will typically have entries of order
p
r even without SPAM, since the o↵-

diagonal terms for generic noise are of order
p
r and there is a residual noise term that has been

incorporated into ⇢. However, the corresponding entries in �E will generally be smaller (or at least,
are determined only by SPAM).

We now show that the variance can be even further improved (by a factor of m and with no
dependence on the state and measurement) for noise that is diagonal in the Pauli basis.

Corollary 14. If the unital block of the noise is diagonal in the Pauli basis, this bound can be
improved to

�2

m  11mr2

4
+O(m2r3) . (79)

Proof. For noise such that ' is diagonal in the Pauli basis, �
1

= �
2

= x and �T  �
1

, which can
be shown using the inequality 2ab  a2 + b2 for a, b 2 R. Therefore, for noise that is diagonal in
the Pauli basis, we have

�2

m  3mr2

4
+

1

4

⇥�

1� 4r + 12r2
�m � (1� 2r)2m

⇤

 11mr2

4
+O(m2r3) (80)

by Eq. (70). ⇤
One consequence of the above corollary is that the variance of the randomized benchmarking

distribution will typically depend strongly upon the choice of 2-design even for gate independent
noise. This observation follows from the above theorem by noting that the unital block can be
perturbed by an arbitrarily small amount to allow it to be unitarily diagonalized. Performing
randomized benchmarking in the basis where the unital block is diagonalized (i.e., setting G = CU

2

)
will give variances of order mr2, while randomized benchmarking in other bases will give variances
of order m2r2.

VII. ASYMPTOTIC VARIANCE OF RANDOMIZED BENCHMARKING

We now consider the variance �2

m of the distribution {Fm,s} as m ! 1. While not directly
relevant to current experiments, the asymptotic behavior is nevertheless interesting in that it may
provide a method of estimating the amount of nonunitality.

We will prove that, for the class of channels defined below called n-contractive channels (which
are generic in the space of CPTP channels), �2

m decays exponentially in m to a constant that
quantifies the amount of nonunitality. Unfortunately, we will not be able to provide a bound on
the decay rate. In fact, no such bound is possible without further assumptions since the channel
[(1�✏)U+✏E ]G for any unitary U and 2-contractive channel E will have an eigenvalue 1�✏+O(✏) < 1
corresponding to the trivial subrep (this can be seen by following the proof of Proposition 16). This
eigenvalue will result in a variance that decays as (1� ✏)m for arbitrary ✏ > 0.

Definition 15. A channel ⇤ : Dd ! Dd is n-contractive with respect to a group G ✓ U(d) if
(⇤⌦n)G has at most one eigenvalue of modulus 1.
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We now prove that all unital but nonunitary channels are 2-contractive with respect to any
finite 2-design. We conjecture that all nonunitary channels are in fact 2-contractive with respect
to any unitary 2-design. An equivalent statement for trace-preserving channels ⇤ is that (⇤⌦2)G is
strongly irreducible whenever ⇤ is not unitary [38]. As a corollary of the following proposition, this
conjecture holds for qubits, since, for qubits, the projection onto the unital part of a CPTP map
is also a CPTP map [21]. However, proving it for higher dimensions remains an open problem.

Proposition 16. Let ⇤ be a completely positive, trace-preserving and unital channel and G a
unitary 2-design. Then ⇤ is 2-contractive with respect to G if and only if it is nonunitary.

Proof. First assume ⇤ is unitary. Since (',Rd2�1) is an orthogonal irrep of U(d), (',Rd2�1)⌦2

contains the trivial rep as a subrep with multiplicity 1 by Proposition 2. Therefore for any U 2 U(d)
and in a fixed Schur basis (i.e., independent of U), '(U)⌦2 = 1 � T (U) for some homomorphism
T . Therefore any vector v in the (one-dimensional) trivial representation is a +1-eigenvector of

'(U)⌦2 for any U and consequently is a +1-eigenvector of
⇥

'⌦2(⇤)
⇤G
.

We now show that for all completely positive, trace-preserving and unital ⇤,
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. (81)

Recall that one of the equivalent definitions of the spectral norm is
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Expanding the averages over G gives
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u . (83)

where in the second line we have used the improved bound for unital channels in Proposition 5 to
bound the contribution from the |G|2 � |G| terms with g 6= h.

Now let u be an arbitrary unit vector and write u =
P

uj,kvj⌦vk, where {vj} is an orthonormal
basis of Cd. Then, since

�

'†'
�g

is positive semidefinite with eigenvalues upper-bounded by 1 by
Proposition 5, we have
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where we have used 0  v†k
�

'†'
�g

vk  1 for all k and g to obtain the second line. By Proposition 1,

|G|�1

X

g2G

⇣

'†'
⌘g

=
Tr'†'

d2 � 1
, (85)

so

|G|�1

X

g2G
u†

h⇣

'†'
⌘gi⌦2

u  Tr'†'

d2 � 1

X

j,k

|uj,k|2

 Tr'†'

d2 � 1
(86)

We conjecture that all nonunitary channels are 2-contractive 
with respect to any unitary 2-designs

An equivalent statement: the averaged tensor power channel 
is “strongly irreducible” whenever the channel is nonunitary

This result guarantees that the asymptotic variance decays 
exponentially to a fixed constant that depends only on the 
magnitude of the nonunital part of the channel.
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Showed a rigorous bound on the RB variance at O(mr)
Go beyond 0th order approximation
Remove the dimensional factor for general d
Plethysm of the Clifford irrep for higher d
Is a closed-form solution possible for qubits?
Improve our mustaches to do better science?
See arxiv:1404.6025 (NJP 2014) for more details!

Conclusions & Open Questions


